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A special free energy function is defined for a solution in the osmotic equilibrium with pure 
solvent. The partition function of the solution is derived at the McMillan-Mayer level and it is 
related to this special function in the same manner as the common partition function of the system 
to its Helmholtz free energy. 

Earlier theories of electrolyte solutions! were developed by the canonical ensemble 
method, formally at the Born-Oppenheimer (BO) level, however, they were based 
on simplified models in which the molecular character was being taken into account 
only for solute species, whereas the solvent was being treated as a continuous medium 
characterized solely by its permittivity. The exact formulation and generalization 
of this approach has been enabled through the McMillan-Mayer theory of solutions, 
which forms a special case of the generalized method of the grand canonical en
semble 2

.
3

• Modern theories of electrolyte solutions4
,5 are being developed within 

the frame of this method. However, the method of canonical ensemble represents 
even at the McMillan-Mayer (MM) level an adequate alternative3

• Due to this 
reason, we shall outline a simple derivation offundamental equations for the canonical 
ensemble at the MM level. We shall limit ourselves to a system containing one solute 
in a single component solvent, since the extension to more complex system is a formal 
question only. 

Formulation of the Problem 

The partition function of a single component thermodynamic system at the BO level 
(a set of molecules in vacuum) is in the usual classical limit expressed through the 
relation 

(1) 

where T is temperature, V is the volume of the system, N is the number of molecules 
of a system component, A is a function 3 of temperature only, f3 = lJkT, k is Boltz-
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mann's constant , UN is the potential energy of intermolecular forces in a system 
containing N molecules and {N} is the set of coordinates of these molecules. The 
partition function (I) is related to the Helmholtz frec energy of thc systcm F(T, JI, N), 
by 

/3F = - In Quo. (2) 

For a thcrmodynamic system at thc M M level (a set of so lutc molecules with the 
solvent-averaged hamilt on ian) we will lind functions ana logou s to thc QIlO and F 
functions as well as relations formally identical with Eqs (I) a nd (2). 

Helmholt z Free Ellergy or MM System 

Let us consider a vesscl of a volum c v sc parated into two rarts by a partition permc
able to solvent 0, but impermcable to the so lutc 1. This partition plays no role if the 
vessel contains the solvent only. Let us dcnotc thc numbcr of molecules of the solvent 
in the system by No, it s chcmical pot cntial rclatcd to OIlC molcculc by Po and the 
pressure of the systcm in the state (T. c. No) by Po. Now let us consider that we add 
N 1 molecules of substance 1 into a part of the sys tem of a volume JI (see Fig. 1 c) 
and that we let establish the osmotic equilibrium between the solu tion in this part 
and the pure so lvent in the other part of the systcm whose volume is v - V. In the 
equilibrium · state, the pressure of the purc solvcnt is P~ and thc solution pressure 
is then p = P~ + P', wherc P' is the osmotic pressure of the so lution. lfthe volume v 

Po,.,.p' Po"t P" 

d 

FIG. I 

The schematic illustration of systems r~la t ing to the outlined denvation. Our aim is 10 describe 
the part of system (c) of a volume V \Vhic~ is in an osmotic equilibrium with the pure solvent 
in the other part of system (c) in the limiting case of u ~ CD at a con~tant volume V, the number 
of molecules of the solute Nt and the number demity of solvent mo lecules No/v 
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of the system grows to infinity a t con stant 

(3) 

(and temperature), p~ approaches Po. The Helmholtz free energy of the system before 
the addition of substance 1 will be denoted by F(T, v, No) and the corresponding 
He)mholt~ free energy after this addition will be denoted by F(T, v, V, No, N l ), 

where the second volume term expresses the volume accesibile to molecules of the 
solute 1. Let LI S define the function A by 

(4) 

We find eas ily that it holds 

(5) 

where I1l is the chemical potential of the solute 1 and P is the osmotic pressure 
of the so lution being in the osmotic equilibrium with the pure solvent at pressure Po. 
(Solutions with this property are denoted as MM systems). Function A possesses 
lIsual properties of the free energy and we shall call it the Helmholtz free energy 
of the MM system. Eq. (5) does not contain quantities referring to the solvent and 
function A describes the MM system formally exactly as it were the Helmholtz 
free energy F(T, V, N 1) of a one-component sys tem at pressure P. 

Partitiol1 FUl1 ction at the MM Leve l 

The canonical ensemble method serves for the description of closed systems. In our 
case, however, the system is closed only with respect to di ssolved substances (we could 
speak about a closed system at the MM level). Such a system can be described to ad

vantage 3 in terms of an ensemble defined by the variables (T, V, N 1, 110) and with the 
partition function 

1/1 = I exp (/3110/£0) QBo(T, v, v, 110, Nt), (6) 
nO f; O 

where Qno(T, V, V, 110' Nt) is the canonical partition function at the BO level of the 
system with a volume V (see Fig. 1 c) containing 110 molecules of the solvent and N 1 

molecules of the dissolved substance 1. It is obvious that the function QMM defined 
by the relation* 

(7) 

The method outlined here may also be used in derivation of the expression for the grand 
partition function at the MM level which is defin<;;j by Eq. (33) of ref. 5. 
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where Eo is the grand partiti on function o f the sys tem containing the pure solvent 

a nd defined by the variables (T, V, li O) ' sa ti s fi es the r ela ti on 

{3A = -In QMM' (8) 

Now let us show that the function QMM can be ex pressed in the form 

(9) 

which agrees formally with (I) and which en titl es us to emp loy usual formal canonical 

ensemble procedures also for the MM systems. (However, we mu st remember5 that 
UN, depend s on temperature and pressure p o). In Eq . (9), AI is a function of tempera

ture and pressure Po and it is defined by th e rela tion 

(10) 

where K! is the equ ilibrium constant for the tra nsfer o f substa nce 1 from the gaseous 

phase into it s solution in solvent 0 defined by the relati on 

K~ N, = lim Qllo(T, v, No) Qllo(T, v,~l 
Quo(T, v, v, No, N I) 

(1J) 

The quan tity UN ! is the potentia l energy of average forces acting among N 1 mole
cules of substance 1 in the so lvent a t infin ite dilution (solvent-averaged potential 

energy): 

In the limiting cases, quantities (3) in Eqs (i 1) and (I 2) remain con stant. It holds 

f exp (-{3UNo,NJ d{No} = L (No)f exp(-{3U"o ,N,)d{no} x 
v no ?; O no v 

(I 3) 

By inserting from (13) into (12) and (9) and aft er a rearrangement using (10) and (11) 
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we obtain 

= exp (- fJPo V) 2: exp (fJnoJ1o) Q Bo(T, V, V, 110' N I) {I 4) 
no ~ O 

which is identical with (7). 

Eq. (9) can also be derived extremely simply in a "thermodynamic" manner. 
The constant Kl can be defined within the frame of thermodynamics in terms of Helm
holtz free energies of systems illustrated in Fig. 1 G, band d. Then by inserting 
into (4), we obtain 

(Is) 

By inserting functions F of systems (b) to (d) from Eq. (2) into Eq. (15) and intro
ducing the function QMM through relation (8), we obtain Eq. (9) directly. 

Note added ill proof: a) As far as liquid solutions are concerned, one can find the function A to 

be comparable to the entire Gibbs free energy rather than to the entire Helmholtz free energy. 
Thus it is misleading to give this function the name of the latter and we shall call it the McMillan
-Mayer free energy instead. 

b) To establish the present theory more rigorously we must recognize that the logarithm 
of the canonical partition function, QCT, v, No), is asymptotically a first order homogeneous 
function of 11 and No . Then we have for any finite values of V and 110 , 

exp (PP
o 

V) = exp (Pllollo) lim _ _ Q(T, v, No) 
>"No- w Q(T, v - V, No - "ol 

(16) 

where Po and 110 are the values of the pressure and the chemical potential at (T, No/v). 

It is interesting to note that even the most general result of the MM theory, Eq. (38) in2
, can 

easily be obtained from Eqs (16) and (13), where in this Case N j = 0 and No, "0 and 110 are 
s-component vectors for an s-component system. 
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